Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
PLoS Pathog ; 20(3): e1012069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452145

RESUMO

Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Humanos , Animais , Camundongos , Vacina BCG/genética , Tuberculose/genética , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Vacinas contra a Tuberculose/genética , Vacinação , Loci Gênicos , Citocinas/genética , Antígenos de Bactérias
2.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294180

RESUMO

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


Assuntos
Vacina BCG , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Tóquio , Mycobacterium bovis/genética , Ativação Linfocitária , Engenharia Genética , Vacinas Sintéticas
3.
Front Cell Infect Microbiol ; 13: 1273019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965265

RESUMO

The COVID-19 pandemic, caused by SARS-CoV-2 virus, has been one of the top public health threats across the world over the past three years. Mycobacterium bovis BCG is currently the only licensed vaccine for tuberculosis, one of the deadliest infectious diseases in the world, that is caused by Mycobacterium tuberculosis. In the past decades, recombinant M.bovis BCG has been studied as a novel vaccine vector for other infectious diseases in humans besides tuberculosis, such as viral infections. In the current study, we generated a recombinant M. bovis BCG strain AspikeRBD that expresses a fusion protein consisting of M. tb Ag85A protein and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using synthetic biology technique. Our results show that the recombinant M. bovis BCG strain successfully expressed this fusion protein. Interestingly, the recombinant M. bovis BCG strain AspikeRBD significantly induced SARS-CoV-2 spike-specific T cell activation and IgG production in mice when compared to the parental M.bovis BCG strain, and was more potent than the recombinant M.bovis BCG strain expressing SARS-CoV-2 spike RBD alone. As expected, the recombinant M. bovis BCG strain AspikeRBD activated an increased number of M. tb Ag85A-specific IFNγ-releasing T cells and enhanced IgG production in mice when compared to the parental M.bovis BCG strain or the BCG strain expressing SARS-CoV-2 spike RBD alone. Taken together, our results indicate a potential application of the recombinant M. bovis BCG strain AspikeRBD as a novel dual vaccine against SARS-CoV-2 and M. tb in humans.


Assuntos
COVID-19 , Doenças Transmissíveis , Tuberculose , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , Vacina BCG/genética , Pandemias/prevenção & controle , Antígenos de Bactérias/genética , COVID-19/prevenção & controle , Vacinas Sintéticas/genética , SARS-CoV-2/genética , Tuberculose/prevenção & controle , Proteínas Recombinantes/genética , Imunoglobulina G
4.
Ann Parasitol ; 69(2): 49-59, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011851

RESUMO

Bacillus Calmette-Guérin (BCG), a live attenuated strain derived from an isolate of Mycobacterium bovis, is one of the childhood vaccinations widely used against tuberculosis (TB). In addition to its effects on mycobacterial diseases, the information has shown the protection effect of BCG in helminthic diseases. In the current review, the role of BCG vaccine in non-specific protection helminthic infection is reviewed. In human alveolar echinococcosis (AE), treatment with BCG enhances host's innate immune response against the parasite via the number and activation of monocytes. In cysticercosis, despite the enhancement of Th1-biased immune responses by coadministration of rcC1 plus BCG-DNA, the level of induced protection did not increase compared to immunization with rcC1 antigen alone. Also, pretreatment of mice with live BCG vaccine induced a high level of protection against subsequent parasite infection with Taenia taeniaeformis. The reduction of the parasite burden in mice infected with Mesocestoides corti that received two doses of BCG post-infection demonstrated the therapeutic effect of BCG. The protective potential of the schistosomula/BCG vaccine against Schistosoma japonicum in sheep study showed a reduction in the number of adult worms and mean faecal egg counts post-challenge. In trichinellosis, BCG can induce hyperplasia of the reticuloendothelial system and activation of macrophages in mice. Therefore, these data revealed that BCG vaccination can exert non-specific protective effects for the prevention of diseases other than tuberculosis. Medicinal doses of BCG may be considered a new approach to the treatment of helminth infections.


Assuntos
Cisticercose , Mycobacterium bovis , Tuberculose , Humanos , Animais , Camundongos , Ovinos , Vacina BCG/uso terapêutico , Vacina BCG/genética , Mycobacterium bovis/genética , Tuberculose/prevenção & controle
5.
Mem Inst Oswaldo Cruz ; 118: e230070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851722

RESUMO

BACKGROUND: The Bacille Calmette-Guérin (BCG) vaccine comprises a family of strains with variable protective efficacy against pulmonary tuberculosis (TB) and leprosy, partly due to genetic differences between strains. OBJECTIVES: Previous data highlighting differences between the genomes and proteomic profiles of BCG strains Moreau and Pasteur led us to evaluate their behaviour in the macrophage microenvironment, capable of stimulating molecular responses that can impact the protective effect of the vaccine. METHODS: Strain infectivity, viability, co-localisation with acidified vesicles, macrophage secretion of IL-1 and MCP-1 and lipid droplet biogenesis were evaluated after infection. FINDINGS: We found that BCG Moreau is internalised more efficiently, with significantly better intracellular survival up to 96 h p.i., whereas more BCG Pasteur bacilli were found co-localised in acidified vesicles up to 6 h p.i. IL-1ß and MCP-1 secretion and lipid droplet biogenesis by infected macrophages were more prominent in response to BCG Pasteur. MAIN CONCLUSION: Overall, our results show that, compared to Pasteur, BCG Moreau has increased fitness and better endurance in the harsh intracellular environment, also regulating anti-microbial responses (lower IL-1b and MCP-1). These findings contribute to the understanding of the physiology of BCG Moreau and Pasteur in response to the intraphagosomal environment in a THP-1 macrophage model.


Assuntos
Mycobacterium bovis , Tuberculose Pulmonar , Humanos , Mycobacterium bovis/genética , Vacina BCG/genética , Proteômica , Tuberculose Pulmonar/prevenção & controle , Macrófagos
6.
Tuberculosis (Edinb) ; 143: 102400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672955

RESUMO

Dodecin is a dodecamer involved in flavin homeostasis, with interesting temperature and osmolarity endurance features in Mycobacterium tuberculosis. A single nucleotide polymorphism in the gene's start codon in BCG, converting ATG to ACG, is predicted to generate a N-terminal shorter isoform, lacking the first 7 amino acids. We previously reported that the shortened recombinant protein has reduced extremophilic features. Here we investigate if within the mycobacterial context dodecin can be produced from both alleles, carrying ATG and ACG start codons. Reporter gene assays using mcherry cloned downstream and in phase to both M.tb and BCG "upstream" regions confirms production of functional proteins. Complementation with both dod alleles similarly enhances M. smegmatis growth after entry into logarithmic phase and exposure to hydrogen peroxide, possibly implicating this protein in oxidative stress response mechanisms. Altogether these data indicate that BCG dodecin is indeed produced, notwithstanding in lower levels compared to M.tb, conferring similar phenotypes, even with the SNP altering the M.tb ATG start codon to the BCG ACG. This protein might be an interesting drug target for the development of new therapeutics against tuberculosis.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Mycobacterium bovis/metabolismo , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , Vacina BCG/genética , Mutação
7.
Microb Genom ; 9(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526642

RESUMO

The bacillus Calmette-Guérin (BCG) vaccine has been in use for prevention of tuberculosis for over a century. It remains the only widely available tuberculosis vaccine and its protective efficacy has varied across geographical regions. Since it was developed, the BCG vaccine strain has been shared across different laboratories around the world, where use of differing culture methods has resulted in genetically distinct strains over time. Whilst differing BCG vaccine efficacy around the world is well documented, and the reasons for this may be multifactorial, it has been hypothesized that genetic differences in BCG vaccine strains contribute to this variation. Isolates from an historic archive of lyophilized BCG strains were regrown, DNA was extracted and then whole-genome sequenced using Oxford Nanopore Technologies. The resulting whole-genome data were plotted on a phylogenetic tree and analysed to identify the presence or absence of regions of difference (RDs) and single-nucleotide polymorphisms (SNPs) relating to virulence, growth and cell wall structure. Of 50 strains available, 36 were revived in culture and 39 were sequenced. Morphology differed between the strains distributed before and after 1934. There was phylogenetic association amongst certain geographically classified strains, most notably BCG-Russia, BCG-Japan and BCG-Danish. RD2, RD171 and RD713 deletions were associated with late strains (seeded after 1927). When mapped to BCG-Pasteur 1172, the SNPs in sigK, plaA, mmaA3 and eccC5 were associated with early strains. Whilst BCG-Russia, BCG-Japan and BCG-Danish showed strong geographical isolate clustering, the late strains, including BCG-Pasteur, showed more variation. A wide range of SNPs were seen within geographically classified strains, and as much intra-strain variation as between-strain variation was seen. The date of distribution from the original Pasteur laboratory (early pre-1927 or late post-1927) gave the strongest association with genetic differences in regions of difference and virulence-related SNPs, which agrees with the previous literature.


Assuntos
Mycobacterium bovis , Tuberculose , Humanos , Vacina BCG/genética , Filogenia , Tuberculose/prevenção & controle , Sequência de Bases
8.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37200108

RESUMO

Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Humanos , Vacina BCG/genética , Tuberculose/genética , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/genética , Patrimônio Genético
9.
J Immunol ; 210(12): 1925-1937, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098890

RESUMO

COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.


Assuntos
COVID-19 , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Proteínas Recombinantes de Fusão/genética , SARS-CoV-2 , Vacinas Sintéticas , COVID-19/prevenção & controle , Mycobacterium bovis/genética
10.
BMC Genomics ; 24(1): 69, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765273

RESUMO

BACKGROUND: Bacillus Calmette-Guérin (BCG) remains the only vaccine to prevent tuberculosis (TB) during childhood, with relatively low to no efficacy against pulmonary TB in adolescents and adults. BCG consists of close to 15 different substrains, where genetic variations among them might contribute to the variable protective efficacy afforded against pulmonary TB. We have shown that the vaccine candidate, BCGΔBCG1419c, which is based on BCG Pasteur, improved protection against chronic TB in murine models, as well as against pulmonary and extrapulmonary TB in guinea pigs. Here, to confirm deletion of the BCG1419c gene and to detect possible genetic variations occurring as a consequence of the spontaneous mutations that may arise during in vitro culture of mycobacteria, the genomes of BCG Pasteur ATCC 35734 and its isogenic derivative, BCGΔBCG1419c, were sequenced and subjected to a comparative analysis between them and against BCG Pasteur 1173P2. RESULTS: The complete catalog of variants in genes relative to the reference genome BCG Pasteur 1173P2 (GenBank NC008769) showed that the parental strain BCG Pasteur ATCC 35734, from which the mutant BCGΔBCG1419c originated, showed five synonymous mutations, three missense mutations, and five codon insertions, whereas the BCGΔBCG1419c mutant reported the same changes. When BCG Pasteur ATCC 35734 and BCGΔBCG1419c were compared, we confirmed that the latter was devoid of the BCG1419c gene, with only one unanticipated SNP at position 2, 828, 791  which we consider has no role in vaccine properties reported thus far. CONCLUSION: We provide evidence that the mutagenesis performed to remove BCG1419c from BCG Pasteur ATCC 35734 solely deleted this gene, and that compared with the reference strain BCG Pasteur 1173P2, few changes were present confirming that they are BCG Pasteur strains, and that changes in immunogenicity or efficacy observed thus far in BCGΔBCG1419c are most likely derived solely from the elimination of the BCG1419c gene.


Assuntos
Mycobacterium bovis , Tuberculose Pulmonar , Tuberculose , Animais , Camundongos , Cobaias , Vacina BCG/genética , Mycobacterium bovis/genética , Tuberculose/microbiologia , Genoma
11.
J Genet Genomics ; 50(6): 434-446, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36681271

RESUMO

Genetic variation is a key factor influencing cytokine production capacity, but which genetic loci regulate cytokine production before and after vaccination, particularly in African population is unknown. Here, we aimed to identify single-nucleotide polymorphisms (SNPs) controlling cytokine responses after microbial stimulation in infants of West-African ancestry, comprising of low-birth-weight neonates randomized to bacillus Calmette-Guérin (BCG) vaccine-at-birth or to the usual delayed BCG. Genome-wide cytokine cytokine quantitative trait loci (cQTL) mapping revealed 12 independent loci, of which the LINC01082-LINC00917 locus influenced more than half of the cytokine-stimulation pairs assessed. Furthermore, nine distinct cQTLs were found among infants randomized to BCG. Functional validation confirmed that several complement genes affect cytokine response after BCG vaccination. We observed a limited overlap of common cQTLs between the West-African infants and cohorts of Western European individuals. These data reveal strong population-specific genetic effects on cytokine production and may indicate new opportunities for therapeutic intervention and vaccine development in African populations.


Assuntos
Vacina BCG , Citocinas , Recém-Nascido , Lactente , Humanos , Criança , Vacina BCG/genética , Citocinas/genética , África Ocidental , Vacinação
12.
BMC Genomics ; 23(1): 609, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35987561

RESUMO

BACKGROUND: Bacillus Calmette-Guérin (BCG) refers to a group of vaccine strains with unique genetic characteristics. BCG is the only available vaccine for preventing tuberculosis (TB). Genetic and biochemical variations among the BCG vaccine strains have been considered as one of the significant parameters affecting the variable protective efficacy of the vaccine against pulmonary tuberculosis. To track genetic variations, here two vaccine strains (Danish 1331 and Pasteur 1173P2) popularly used according to the BCG World Atlas were subjected to a comparative analysis against the Mycobacterium tuberculosis H37Rv, Mycobacterium bovis AF2122/97, and Mycobacterium tuberculosis variant bovis BCG str. Pasteur 1173P2 reference genomes. Besides, the presence or absence of the experimentally verified human T cell epitopes was examined. RESULTS: Only two variants were identified in BCG Danish 1331 that have not been reported previously in any BCG strains with the complete submitted genome yet. Furthermore, we identified a DU1-like 14,577 bp region in BCG Danish 1331; The duplication which was previously seemed to be exclusive to the BCG Pasteur. We also found that 35% of the T cell epitopes are absent from both strains, and epitope sequences are more conserved than the rest of the genome. CONCLUSIONS: We provided a comprehensive catalog of single nucleotide polymorphisms (SNPs) and short insertions and deletions (indels) in BCG Danish 1331 and BCG Pasteur 1173P2. These findings may help determine the effect of genetic variations on the variable protective efficacy of BCG vaccine strains.


Assuntos
Vacina BCG , Mycobacterium bovis , Mycobacterium tuberculosis , Vacina BCG/genética , Epitopos de Linfócito T/genética , Genômica , Humanos , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/genética
13.
mBio ; 13(3): e0068722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642945

RESUMO

Mycobacterium tuberculosis infects approximately one-third of the world's population, causing active tuberculosis (TB) in ~10 million people and death in ~1.5 million people annually. A potent vaccine is needed to boost the level of immunity conferred by the current Mycobacterium bovis BCG vaccine that provides moderate protection against childhood TB but variable protection against adult pulmonary TB. Previously, we developed a recombinant attenuated Listeria monocytogenes (rLm)-vectored M. tuberculosis vaccine expressing the M. tuberculosis 30-kDa major secretory protein (r30/Ag85B), recombinant attenuated L. monocytogenes ΔactA ΔinlB prfA*30 (rLm30), and showed that boosting BCG-primed mice and guinea pigs with rLm30 enhances immunoprotection against challenge with aerosolized M. tuberculosis Erdman strain. To broaden the antigen repertoire and robustness of rLm30, we constructed 16 recombinant attenuated L. monocytogenes vaccine candidates expressing 3, 4, or 5 among 15 selected M. tuberculosis antigens, verified their protein expression, genetic stability, and growth kinetics in macrophages, and evaluated them for capacity to boost protective efficacy in BCG-primed mice. We found that boosting BCG-primed C57BL/6 and BALB/c mice with recombinant attenuated L. monocytogenes multiantigenic M. tuberculosis vaccines, especially the rLm5Ag(30) vaccine expressing a fusion protein of 23.5/Mpt64, TB10.4/EsxH, ESAT6/EsxA, CFP10/EsxB, and r30, enhances BCG-induced protective immunity against M. tuberculosis aerosol challenge. In immunogenicity studies, rLm5Ag(30) strongly boosts M. tuberculosis antigen-specific CD4-positive (CD4+) and CD8+ T cell-mediated TH1-type immune responses in the spleens and lungs of BCG-primed C57BL/6 mice but does so only weakly in BCG-primed BALB/c mice. Hence, rLm5Ag(30) boosts BCG-primed immunoprotection against M. tuberculosis aerosol challenge in both C57BL/6 and BALB/c mice despite major differences in the magnitude of the vaccine-induced Th1 response in these mouse strains. Given the consistency with which recombinant attenuated L. monocytogenes vaccines expressing the 5 M. tuberculosis antigens in rLm5Ag(30) are able to boost the already high level of protection conferred by BCG alone in two rigorous mouse models of pulmonary TB and the broad CD4+ and CD8+ T cell immunity induced by rLm5Ag(30), this vaccine holds considerable promise as a new vaccine to combat the TB pandemic, especially for the majority of the world's population immunized with BCG in infancy. IMPORTANCE TB, one of the world's most important infectious diseases, afflicts approximately 10 million people and kills approximately 1.5 million people annually. The current vaccine, BCG, developed over a century ago, has been administered to about 5 billion people, mostly in infancy, but is only modestly protective. Hence, a vaccine is urgently needed to boost the level of protection afforded by BCG. Herein, we describe a safe potent live vaccine that utilizes as a vector an attenuated strain of Listeria monocytogenes, a bacterium that mimics the intracellular lifestyle of Mycobacterium tuberculosis, the causative agent of TB. The vaccine produces multiple immunologically protective proteins of M. tuberculosis. In two mouse models of pulmonary TB, the vaccine boosts the level of protection afforded by BCG. Thus, this vaccine holds considerable promise as a new vaccine to combat the TB pandemic, especially for the majority of the world's population immunized with BCG.


Assuntos
Listeria , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose Pulmonar , Tuberculose , Aerossóis , Animais , Antígenos de Bactérias/metabolismo , Vacina BCG/genética , Proteínas de Bactérias/genética , Criança , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/metabolismo , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/genética , Vacinas Atenuadas , Vacinas Sintéticas/genética
14.
Front Immunol ; 13: 867195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432328

RESUMO

Tuberculosis is one of the deadliest infectious diseases and a huge healthcare burden in many countries. New vaccines, including recombinant BCG-based candidates, are currently under evaluation in clinical trials. Our group previously showed that a recombinant BCG expressing LTAK63 (rBCG-LTAK63), a genetically detoxified subunit A of heat-labile toxin (LT) from Escherichia coli, induces improved protection against Mycobacterium tuberculosis (Mtb) in mouse models. This construct uses a traditional antibiotic resistance marker to enable heterologous expression. In order to avoid the use of these markers, not appropriate for human vaccines, we used CRISPR/Cas9 to generate unmarked mutations in the lysA gene, thus obtaining a lysine auxotrophic BCG strain. A mycobacterial vector carrying lysA and ltak63 gene was used to complement the auxotrophic BCG which co-expressed the LTAK63 antigen (rBCGΔ-LTAK63) at comparable levels to the original construct. The intranasal challenge with Mtb confirmed the superior protection induced by rBCGΔ-LTAK63 compared to wild-type BCG. Furthermore, mice immunized with rBCGΔ-LTAK63 showed improved lung function. In this work we showed the practical application of CRISPR/Cas9 in the tuberculosis vaccine development field.


Assuntos
Vacinas contra a Tuberculose , Tuberculose , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Animais , Vacina BCG/genética , Sistemas CRISPR-Cas , Escherichia coli , Camundongos , Vacinas contra a Tuberculose/genética
15.
Cell Rep ; 37(7): 110028, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788625

RESUMO

Bacillus Calmette-Guérin (BCG) vaccine is one of the most widely used vaccines worldwide. In addition to protection against tuberculosis, BCG confers a degree of non-specific protection against other infections by enhancing secondary immune responses to heterologous pathogens, termed "trained immunity." To better understand BCG-induced immune reprogramming, we perform single-cell transcriptomic measurements before and after BCG vaccination using secondary immune stimulation with bacterial lipopolysaccharide (LPS). We find that BCG reduces systemic inflammation and identify 75 genes with altered LPS responses, including inflammatory mediators such as CCL3 and CCL4 that have a heightened response. Co-expression analysis reveals that gene modules containing these cytokines lose coordination after BCG. Other modules exhibit increased coordination, including several humanin nuclear isoforms that we confirm induce trained immunity in vitro. Our results link in vivo BCG administration to single-cell transcriptomic changes, validated in human genetics experiments, and highlight genes that are putatively responsible for non-specific protective effects of BCG.


Assuntos
Vacina BCG/genética , Monócitos/imunologia , Transcriptoma/genética , Adulto , Vacina BCG/imunologia , Citocinas/imunologia , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Voluntários Saudáveis , Humanos , Imunidade/genética , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/imunologia , Inflamação , Mediadores da Inflamação/farmacologia , Masculino , Monócitos/fisiologia , Vacinação
16.
Biomed Pharmacother ; 142: 112047, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426260

RESUMO

Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine's safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG's therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the "recombinant" plus "drug-resistant" BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB.


Assuntos
Antituberculosos/farmacologia , Vacina BCG/imunologia , Farmacorresistência Bacteriana/genética , Mycobacterium bovis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/prevenção & controle , Vacinas Sintéticas/imunologia , Amicacina/farmacologia , Amicacina/uso terapêutico , Animais , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antituberculosos/uso terapêutico , Vacina BCG/biossíntese , Vacina BCG/genética , Vacina BCG/uso terapêutico , Modelos Animais de Doenças , Levofloxacino/farmacologia , Levofloxacino/uso terapêutico , Camundongos Endogâmicos BALB C , Camundongos SCID , Mycobacterium bovis/química , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Plasmídeos , Protionamida/farmacologia , Protionamida/uso terapêutico , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/patologia , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/genética , Vacinas Sintéticas/uso terapêutico , Virulência
17.
Front Immunol ; 12: 622995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708215

RESUMO

Natural Killer cell receptors allow this heterogeneous immune population to efficiently fight both tumors and infection, so their use as immunotherapy agents is an active field of research. Cytokine activation, particularly by myeloid cell-derived IL15, can induce potent NK anti-tumor responses. While studying the mechanism of action of intravesical instillations of Bacille Calmette-Guérin (BCG) as therapy for patients with high risk non-muscle invasive bladder cancer, we showed that BCG can activate a cytotoxic CD56bright NK cell population which efficiently recognized bladder cancer cells. This pioneer immunotherapy provides an invaluable model to understand the role of different immune populations in tumor elimination. However, during the propagation of BCG worldwide a large number of genetically diverse BCG substrains developed. Here, we investigated the capacity of different BCG substrains to promote NK cell activation and confirmed that they were able to activate lymphocytes. Tice, Connaught and Moreau were the substrains with a stronger NK activation effect as measured by CD56 upregulation. Surprisingly, dead mycobacteria also stimulated PBMC cultures and we further demonstrate here that subcellular fractions of BCG-Tice, in the absence of live mycobacteria, could also induce an NK cell response. Lipids from BCG-Tice, but not from Mycobacterium bovis, stimulated NK cell activation and degranulation, whereas the aqueous fraction of either bacteria did not activate lymphocytes. However, delipidated BCG-Tice bacteria were able to activate effector cells (CD3+CD56+ and NK, CD3-CD56+). These data demonstrate that different components of mycobacteria can stimulate different immune subpopulations resulting in phenotypes suitable for cancer elimination.


Assuntos
Antineoplásicos/imunologia , Vacina BCG/imunologia , Degranulação Celular , Imunoterapia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Mycobacterium bovis/imunologia , Neoplasias da Bexiga Urinária/terapia , Vacina BCG/genética , Complexo CD3/metabolismo , Antígeno CD56/metabolismo , Proliferação de Células , Técnicas de Cocultura , Humanos , Células K562 , Células Matadoras Naturais/metabolismo , Mycobacterium bovis/genética , Microambiente Tumoral , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/metabolismo , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia
18.
BMC Infect Dis ; 21(1): 151, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546627

RESUMO

BACKGROUND: Joint replacement is an effective intervention and prosthetic joint infection (PJI) is one of the most serious complications of such surgery. Diagnosis of PJI is often complex and requires multiple modalities of investigation. We describe a rare cause of PJI which highlights these challenges and the role of whole-genome sequencing to achieve a rapid microbiological diagnosis to facilitate prompt and appropriate management. CASE PRESENTATION: A 79-year-old man developed chronic hip pain associated with a soft-tissue mass, fluid collection and sinus adjacent to his eight-year-old hip prosthesis. His symptoms started after intravesical Bacillus Calmette-Guerin (BCG) therapy for bladder cancer. Synovasure™ and 16S polymerase chain reaction (PCR) tests were negative, but culture of the periarticular mass and genome sequencing diagnosed BCG infection. He underwent a two-stage joint revision and a prolonged duration of antibiotic therapy which was curative. CONCLUSIONS: BCG PJI after therapeutic exposure can have serious consequences, and awareness of this potential complication, identified from patient history, is essential. In addition, requesting appropriate testing is required, together with recognition that traditional diagnostics may be negative in non-pyogenic PJI. Advanced molecular techniques have a role to enhance the timely management of these infections.


Assuntos
Artrite Infecciosa/etiologia , Vacina BCG/efeitos adversos , Infecções Relacionadas à Prótese/etiologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Intravesical , Idoso , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/terapia , Vacina BCG/administração & dosagem , Vacina BCG/genética , Vacina BCG/isolamento & purificação , Genoma Bacteriano/genética , Prótese de Quadril/efeitos adversos , Prótese de Quadril/microbiologia , Humanos , Masculino , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/terapia , Resultado do Tratamento
19.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466825

RESUMO

Dilated cardiomyopathy (DCM) is a potentially lethal disorder characterized by progressive impairment of cardiac function. Chronic myocarditis has long been hypothesized to be one of the causes of DCM. However, owing to the lack of suitable animal models of chronic myocarditis, its pathophysiology remains unclear. Here, we report a novel mouse model of chronic myocarditis induced by recombinant bacille Calmette-Guérin (rBCG) expressing a CD4+ T-cell epitope of cardiac myosin heavy chain-α (rBCG-MyHCα). Mice immunized with rBCG-MyHCα developed chronic myocarditis, and echocardiography revealed dilation and impaired contraction of ventricles, similar to those observed in human DCM. In the heart, CD62L-CD4+ T cells were increased and produced significant amounts of IFN-γ and IL-17 in response to cardiac myosin. Adoptive transfer of CD62L-CD4+ T cells induced myocarditis in the recipient mice, which indicated that CD62L-CD4+ T cells were the effector cells in this model. rBCG-MyHCα-infected dendritic cells produced proinflammatory cytokines and induced MyHCα-specific T-cell proliferation and Th1 and Th17 polarization. This novel chronic myocarditis mouse model may allow the identification of the central pathophysiological and immunological processes involved in the progression to DCM.


Assuntos
Vacina BCG/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Miocardite/imunologia , Miosinas Ventriculares/imunologia , Animais , Vacina BCG/genética , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Doença Crônica , Citocinas/imunologia , Citocinas/metabolismo , Ecocardiografia , Epitopos de Linfócito T/genética , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Ativação Linfocitária , Masculino , Camundongos Endogâmicos BALB C , Miocardite/patologia , Miocardite/fisiopatologia , Proteínas Recombinantes/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Miosinas Ventriculares/genética
20.
Pathog Dis ; 79(1)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33201999

RESUMO

Tuberculosis (TB) is the most important infectious disease worldwide, based on the number of new cases and deaths reported by the World Health Organization. Several vaccine candidates against TB have been characterized at preclinical and clinical levels. The BCGΔBCG1419c vaccine candidate, which lacks the BCG1419c gene that encodes for a c-di-GMP phosphodiesterase, provides improved efficacy against chronic TB, reactivation from latent-like infection and against chronic TB in the presence of type 2 diabetes in murine models. We previously reported that compared with wild type BCG, BCGΔBCG1419c changed levels of several proteins. Here, using a label-free proteomic approach, we confirmed that a novel, second-generation version of BCGΔBCG1419c maintains changes in antigenic proteins already reported, and here we further found differences in secreted proteins, as well as that this new BCGΔBCG1419c version modifies its production of proteins involved in redox and nitrogen/protein metabolism compared with wild type BCG. This work contributes to the proteomic characterization of a novel vaccine candidate that is more effective against TB than parental BCG in diverse murine models.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/genética , Vacina BCG/genética , Vacina BCG/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , DNA Bacteriano , Regulação para Baixo , Humanos , Mutação , Oxirredução , Proteoma/genética , Espectrometria de Massas por Ionização por Electrospray , Tuberculose/prevenção & controle , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...